Товаров (0)
на сумму 0 руб.
Перейти в корзину

Виниловая таблица "Металлургия" 100х140 см (Код: Хим-199)

Виниловая таблица "Металлургия" 100х140 см
zoom Увеличить изображение
Рейтинг:
Цена: 950 руб.
в т.ч. 18 % НДС
Количество: 
Описание

Внимание! Описание ниже, это справочный материал, он не указан в данной виниловой таблице!

1 Металлы и их свойства Способы получения

2 Металлы. Общая характеристика. Большинство элементов периодической системы представляют собой металлы, находясь в виде простых веществ. Их характеризует: небольшое число электронов на внешнем электронном уровне; значительное расстояние внешних электронов от ядра, отсюда – слабая связь их с ядром, низкие значения Е ионизации; металлическая связь: нейтральные атомы ионы + «электронный газ» - отсюда высокая электропроводность, теплопроводность, металлический блеск и др.

3 Физические свойства металлов Твердое агрегатное состояние (кроме Hg) – обусловлено прочностью пространственной решетки. Cr – по твердости приближается к алмазу Na, K – легко режутся ножом Металлический блеск – способность отражать свет. Наблюдается, если металл в куске. В раздробленном состоянии (кроме Mg и Al) металлы представляют собой порошки черного или темно- серого цвета. Чем меньше поглощают света, тем ярче блеск. Поэтому серебро Ag и палладий Pd можно использовать для изготовления зеркал. На свойстве металлов полностью отражать радиоволны основана радиолокация.

4 Физические свойства металлов Электрическая проводимость – способность проводить электрический ток. Лучшие проводники электричества Ag и Cu, худшие Hg и Pb. При нагревании электрическая проводимость падает, при охлаждении растет. Около абсолютного 0 ( сверхпроводимость) Теплопроводность. Наибольшей теплопроводностью обладают металлы с наилучшей электрической проводимостью.

5 Физические свойства металлов Пластичность - способность легко деформироваться (при высокой температуре). Для металлов характерны такие способы обработки, как ковка, штамповка, прессование, прокатывание в листы, вытягивание в проволоку. Наиболее пластичны Au, Ag, Cu: из 1 г Au удается получить 3 км проволоки, изготовить «золотую фольгу» толщиной 0,0001 мм Деформируемость при небольших нагрузках больше всего выражена у металлов 1А группы (Na, K), т.к. они пластичны и обладают малой вязкостью. Механически прочные металлы деформируются только под действием больших нагрузок.

6 Физические свойства металлов Плотность По плотности металлы подразделяются на: Легкие металлы ( ρ < 5г/см 3 ) обычно легкоплавкие. Например, Cs плавится при 280˚С Тяжелые металлы ( ρ > 5 г/см3) тугоплавкие. Температура плавления Wf 3380 ˚C Самый легкий из металлов Li (ρ=0.53г/см3) Самый тяжелый - Os (ρ=22.48 г/см3)

7 Физические свойства металлов Температура кипения Металлы имеют очень высокие температуры кипения. Например, K 760 ˚C, Cu 2300 ˚C, Fe 3000 ˚C, Wf 5900 ˚C. В парообразном состоянии металлы одноатомны. Полиморфизм, т.е. свойство металлов принимать различные кристаллические формы в твердом состоянии. Обозначается греческими буквами α и β. Например, α-модификация Co при t > 4200C, переходит в β – модификацию и при 14950С плавится; у Fe сущестуют α, β, γ –модификации

8 Физические свойства металлов Магнитные свойства Диамагнетики – выталкиваются из магнитного поля (Cu, Au, Ag, Zn, Cd, Hg, Zr) Парамагнетики – втягиваются магнитным полем ( Sc, иттрий, лантан, Ti, V, Nb, Ra, Os, Pd, Ir, Pt) Ферромагнетики – обладают особенно высокой магнитной восприимчивостью – Fe, Co, Ni

9 Металлы. Классификация. В технике металлы делятся на: Черные (Fe и его сплавы, Mn, Cr) Драгоценные (Au, Ag, Pt, Ir, Os, Pd) Редкие (Ti, Ge, Zr, La, In, Be, Mo, V) Остальные металлы (включая Mg и Al) – цветные. Делятся на легкие: Ca, Al, Mg и тяжелые: Cu, Pb, Sn, Zn Кроме того различают: Щелочные (Li, Na, K, Rb, Cs, Fr) Щелочно-земельные (Mg, Ca, Sr, Ba, Ra)

10 Внутреннее строение металлов В узлах пространственной кристаллической решетки металла расположены положительные ионы, а между ними перемещаются свободные электроны – «электронный газ». Переходя от одного положительного иона к другому, они как бы осуществляют связь между ионами и превращают кристаллы металла в единое целое. Для металлов характерны кристаллические решетки, в которых каждый ион окружен 8-12 другими ионами, т.е. с большим координационным числом. Если в кристалле одного металла ион имеет координационное число 12, а в кристалле другого – только 10, то структура 1-го более компактна, чем 2-ого.

11 Основные типы кристаллических решеток Объемно- центрированная кубическая: α – Fe, Na, K, α - Cr и др.

12 Основные типы кристаллических решеток Гранецентрированная: Ca, γ – Fe, Al (плотная упаковка) )

13 Основные типы кристаллических решеток Гексагональная: Be, Mg, Cd, Ti

14 Металлы Некоторые свойства металлов можно объяснить, исходя из строения их кристаллической решетки. Пластичность металлов объясняется скольжением одних слоев ионов относительно других под внешним воздействием (соты). Для сплавов это уже не характерно!!! Металлы теряют пластичность после механической обработки, нарушающей правильное строение кристаллов. Электропроводность при повышении температуры падает, а при понижении температуры возрастает. При нагревании в кристалле колебательные движения ионов усиливаются, что затрудняет передвижение электронов – электропроводность падает. При охлаждении, наоборот, электропроводность растет. Фотоэффект – свойство металлов выбрасывать е-ны под действием электромагнитных волн. Он обусловлен тем, что валентные е-ны слабо удерживаются атомами металлов и могут легко быть выбиты из них.

15 Химические свойства металлов По степени химической активности металлы располагаются в ряд напряжений (электрохимический ряд напряжений): Li, K, Ba, Ca, Na, Mg, Al, Be, Mn, Zn, Cr, Fe, Co, Ni, Sn, Pb, H2, Cu, Hg, Ag, Pt, Au Количественной характеристикой стремления одного металла восстанавливать ионы другого металла является напряжение (электродвижущая сила), создаваемое гальваническим элементом, в котором один из электродов изготовлен из одного металла, а другой – из другого металла. В ряду напряжений металлы располагаются в порядке возрастания напряжения, создаваемого гальваническим элементом, в котором один из электродов все время остается постоянным (стандартный электрод), а другой изготавливают из того металла, положение которого в ряду напряжений хотят определить. В качестве стандартного электрода применяют так называемый водородный электрод, представляющий собой платиновую (Pt) пластинку, опущенную в кислый раствор, через который непрерывно пропускают газообразный водород при давлении 1 атм.

17 Нахождение в природе Самородные – Au, Pt, реже Ag, Cu, еще реже Hg, Sn. Металлы из левой части ряда напряжений легко окисляются, поэтому не встречаются в самородном виде, только в соединениях. Источник получения металлов – руды. Состоят обычно из нескольких металлов – полиметаллические (медно-цинковые, свинцово-серебрянные). Обычно представляют собой оксиды, сульфиды, фосфаты металлов. Находятся вместе с пустой породой.

19 Способы получения металлов Пирометаллургия из руд, при высокой температуре, путем восстановления окислов металлов коксом, CO, H 2 и др.(так получают Fe, Cu, Zn) Cu2O + C = 2Cu + CO Cu2O + CO = 2Cu + CO2 2ZnS + 3O2 = ZnO + 2SO2 (чугун из FeS) ZnO + C = Zn + CO Разновидность пирометаллургии – металлотермия

20 Способы получения металлов Гидрометаллургия – способ получения металлов из растворов солей. Оксид растворяют в кислоте, получают электролит. Затем металл восстанавливают или выделяют электролизом CuO + H 2 SО 4 = CuSО 4 + H 2 O CuSО 4 + Fe = Cu+FeSО 4 Таким образом получают Au, Ag, Zn, Cd

21 Способы получения металлов Электрометаллургия – способ получения металлов путем восстановления их из различных оксидов, щелочей или хлоридов с помощью электрического тока. Так получают очень чистые Na, Al, Mg, щелочноземельные металлы. Для получения металлов высокой степени чистоты из очищаемого металла изготавливают анод. При электролизе он растворяется, ионы металла переходят в раствор, а на катоде они восстанавливаются и осаждаются на нем. Электролитически чистые металлы: Cu, Ag, Ni, Pb, Fe

24 Способы получения металлов Переплавка в вакууме Термическое разложение летучих соединений Зонная плавка

25 Сплавы интерметаллические Латунь 60% Cu, 40% Zn- большая твердость 90% Cu, 10% Zn Бронза 89,5% Cu, 0,5 % Pb + другие металлы 90% Сu, 10% Sn - высокие механические свойства Мельхиор Cu + Ni- твердость 50% + 50% 53% Cu, 7% Ni, 40% Zn – изготавливают посуду

26 Сплавы интерметаллические Нейзильбер65% Cu, 20%Zn, 15%Ni Константан59% Cu, 40%Ni, 1%Mn Никелин68%Cu, 32% Ni ДюралюминийAl + Cu, Mg- легкость, твердость как у стали 87,5%Mg, 8,5% Al, 0,2% Mn, 2% Cu, 1% Cd, 0,5% Zn Баббит83,5% Sn, 11% Sb, 5,5% Cu 72% Pb, 10% Sn, 15% Sb, 3% Cu «Нихром»80% Ni, 20% Cr- мало окисляется 60% Ni, 25% Fe, 11% Cr, 4% Mn- высокие механические свойства, большое электросопротивление Чугун – сплав Fe и C (>=2%), Si, Mn, P, S –тверд и хрупок Сталь – сплав C (

31 Коррозия – разрушение металла под влиянием окружающей среды. Виды коррозии. Коррозия представляет собой окислительно- восстановительный процесс, протекающий на границе раздела фаз может протекать в газах, воздухе, воде и растворах электролитов, в органических растворителях. При этом металлы окисляются, а вещества, с которыми они взаимодействуют, восстанавливаются. Коррозия металлов и способы защиты от неё

32 Виды коррозии сплошная (равномерная и неравномерная) – разрушается вся поверхность металла местная – пятна, точки питтинга (углубление точек) интеркристаллитная (межкристаллитная) – коррозия продвигается вглубь по границам зерен металла транскристаллитная – рассекает металл трещиной через зерно избирательная (селективная) – в сплаве разрушается один компонент, например, обесцинкование латуни подповерхностная – коррозия, начавшись с поверхности, в дальнейшем поражает подповерхностные слои металла

34 Виды коррозии По механизму коррозия бывает: химическая электрохимическая Химическая коррозия – разрушает металл окислением его в окружающей среде без возникновения в системе электрического тока. При повышении температуры скорость коррозии возрастает. Большой вред наносит так называемая газовая коррозия, т.е. окисление металлов кислородом воздуха, CO 2.

35 Виды коррозии У некоторых металлов соприкосновение с О 2 воздуха сильно замедляет процесс коррозии. На их поверхности образуется так называемая защитная окисная пленка, которая препятствует проникновению к металлу как газов, так и жидкостей. Такой металл переходит в пассивное состояние, становится химически неактивным. Например, HNO3(конц.) пассивирует Fe на поверхности металла образуется защитная пленка, препятствующая реакции Fe + HNO 3.

36 Виды коррозии На поверхности Mg, Al всегда есть защитная пленка. Ее толщина 0,00001 мм, она остается при изгибе, проводит ток, плавится при 2050 ˚С, тогда как чистый Al – при 680 ˚С. Подобные пленки образуются также на Be, Cr, Zn, Ta и другие металлы. Пример. Сопла ракетных двигателей, цилиндры, работают на жидком топливе, который содержит примеси S и ее соединения, которая при сгорании превращается в SO2, SO3. SO2 и SO3 – коррозионно-активные вещества.

37 Виды коррозии Электрохимическая коррозия. Это разрушение металла при соприкосновении двух разнородных металлов. Поэтому, чем чище металл, тем более он стоек к коррозии (для сравнения: техническое Fe и электролитическое Fe). NB! Электрохимическая коррозия разрушает металл в среде электролита с возникновением внутри системы электрического тока. В этом случае наряду с химическими процессами (отдача -нов) протекают и электрические (перенос электронов от одного участка к другому). Пример. Коррозия Fe в контакте с Cu в растворе соляной кислоты HCl (соляная кислота – сильный электролит - концентрация H+ в растворе высокая)

38 Электрохимическая коррозия

39 Электролит - H 2 O Из-за неравномерного доступа О 2 к металлической поверхности, покрытой влагой (капля), образуется особая гальванопара: участок с затрудненным доступом О 2 – анод, с более легким доступом О 2 – катод. Разрушаются металлы с более отрицательным потенциалом, его ионы переходят в раствор, а е-ны переходят к менее активному металлу, на котором происходит восстановление растворенного в воде О 2.

40 Электрохимическая коррозия NB! Скорость электрохимической коррозии металлов тем больше, чем дальше расположены друг от друга в ряду стандартных электродных потенциалов металлы, из которых образуется гальваническая пара. На скорость электрохимической коррозии влияет характер раствора электролита. Чем меньше pH раствора, чем больше в нем содержание окислителя, тем быстрее протекает коррозия. С ростом температуры скорость электрохимической коррозии возрастает. Примеры: атмосферная коррозия – влажный воздух, наличие трещин; почвенная коррозия – трубопроводы, кабели. Металл трубопровода соприкасается с почвой, содержащей влагу и О 2. Особенно коррозионно-активны почвы с высокой влажностью, низким pH и хорошей электрической проводимостью (болотистые, торфяные); электрокоррозия – вызывается блуждающими токами, исходящими от метро, трамвая, электроустановок.

41 Способы защиты от коррозии Защитные поверхностные покрытия металлов Покрытие Zn, Sn, Pb, Ni, Cr – металлы и неметаллы – лаки, эмали и др. Металлические покрытия наносят гальваническим путем. Если потенциал покрытия более отрицателен, чем у защищаемого металла, то оно называется анодным, а если потенциал покрытия более положителен – катодным. Например, железо Fe покрыто цинком Zn - анодное покрытие

42 Способы защиты от коррозии Создание сплавов с антикоррозийными свойствами. Пример: сталь + 12% Cr не ржавеет. Ni, Co, Cu усиливают антикоррозийные свойства. Протекторная защита и электрозащита (protector (лат.) – защитник, покровитель). В качестве протекторов при защите стальных изделий используют Mg, Al, Zn и их сплавы. В процессы коррозии протектор служит анодом, разрушается, тем самым, сохраняя конструкцию от разрушения. По мере разрушения протекторы заменяют новыми. Электрозащита : конструкция, находящаяся в среде электролита, соединяется с другим металлом (куском Fe), но через внешний источник тока. При этом защищаемую конструкцию присоединяют к катоду, а металл – к аноду источника тока. В этом случае -ны отнимаются от анода источником тока. Анод (защищающий металл) разрушается, а на катоде происходит восстановление окислителя. Электрозащита имеет преимущество перед протекторной (радиус действия ее 2000м, у второй - 50м).

История человечества насчитывает не одну тысячу лет. На протяжении всего периода существования нашей расы отмечается стабильный технический прогресс, немаловажную роль в котором сыграло умение человека обращаться с металлом, создавать и добывать его. Поэтому вполне логично, что металлургия – это то, без чего невозможно представить наш быт, нормальное выполнение рабочих обязанностей и многое другое. Определение Прежде всего стоит разобраться с тем, как по-научному, с технической точки зрения, называют современную сферу производства. Итак, металлургия - это раздел науки, техники, который охватывает процесс получения различных металлов из руды или иных материалов, а также все процессы, имеющие связь с трансформацией химического состава, свойств и структуры сплавов.металлургия это Структура На сегодняшний день металлургия – это мощнейшая отрасль промышленности. Кроме того, она – обширное понятие, которое включает в себя: Непосредственное производство металлов. Обработку металлических изделий как в горячем, так и холодном виде. Сварку. Нанесение различных металлических покрытий. Раздел науки – материаловедение. Данное направление в теоретическом изучении физико-химических процессов ориентируется на познание поведения металлов, сплавов и интерметаллидов. Разновидности Во всем мире существует две основные отрасли металлургии – черная и цветная. Такая градация сложилась исторически. Черная металлургия заключается в обработке железа и всех сплавов, в котором оно присутствует. Также эта отрасль подразумевает извлечение из недр земли и последующее обогащение руд черных металлов, сталелитейное и чугунолитейное производство, прокат заготовок, производство ферросплавов. заводы металлургии К цветной металлургии причисляют работу с рудой любого металла, кроме железа. Кстати, цветные металлы условно делят на две большие группы: - Тяжелые (никель, олово, свинец, медь). - Легкие (титан, магний, алюминий). Научные решения Несомненно, что металлургия – это деятельность, требующая внедрения инновационных технологий. В связи с этим многие страны нашей планеты активно ведут исследовательские работы, целью которых является изучение и применение на практике самых разнообразных микроорганизмов, которые помогли бы решить, например, такой злободневный вопрос, как очистка сточных вод, являющихся обязательной составляющей металлургического производства. Помимо этого, уже стали реальностью такие процессы, как биологическое окисление, осаждение, сорбция и прочие. Разделение по технологическому процессу Заводы металлургии можно условно причислить к двум основным группам: - пирометаллургии, где процессы протекают при очень высоких температурах (плавка, обжиг); - гидрометаллургии, которая заключается в извлечении металлов из руд при помощи воды и прочих водных растворов с использованием химических реактивов. Принцип выбора места постройки металлургического завода Для того чтобы понять, на основе каких выводов принимается решение о возведении предприятия в том или ином месте, стоит рассмотреть основные факторы размещения металлургии. - Читайте подробнее на FB.ru: http://fb.ru/article/220705/metallurgiya---eto-otrasli-metallurgii-predpriyatiya-i-ih-razmeschenie
История человечества насчитывает не одну тысячу лет. На протяжении всего периода существования нашей расы отмечается стабильный технический прогресс, немаловажную роль в котором сыграло умение человека обращаться с металлом, создавать и добывать его. Поэтому вполне логично, что металлургия – это то, без чего невозможно представить наш быт, нормальное выполнение рабочих обязанностей и многое другое. Определение Прежде всего стоит разобраться с тем, как по-научному, с технической точки зрения, называют современную сферу производства. Итак, металлургия - это раздел науки, техники, который охватывает процесс получения различных металлов из руды или иных материалов, а также все процессы, имеющие связь с трансформацией химического состава, свойств и структуры сплавов.металлургия это Структура На сегодняшний день металлургия – это мощнейшая отрасль промышленности. Кроме того, она – обширное понятие, которое включает в себя: Непосредственное производство металлов. Обработку металлических изделий как в горячем, так и холодном виде. Сварку. Нанесение различных металлических покрытий. Раздел науки – материаловедение. Данное направление в теоретическом изучении физико-химических процессов ориентируется на познание поведения металлов, сплавов и интерметаллидов. Разновидности Во всем мире существует две основные отрасли металлургии – черная и цветная. Такая градация сложилась исторически. Черная металлургия заключается в обработке железа и всех сплавов, в котором оно присутствует. Также эта отрасль подразумевает извлечение из недр земли и последующее обогащение руд черных металлов, сталелитейное и чугунолитейное производство, прокат заготовок, производство ферросплавов. заводы металлургии К цветной металлургии причисляют работу с рудой любого металла, кроме железа. Кстати, цвет
Сопутствующие товары
Отзывы
Отзывы
Оставить отзыв
Имя
E-mail
Текст комментария
Оценка для товара
Copyright MAXXmarketing Webdesigner GmbH

Просмотренные товары